
Indian J.Sci.Res. 11 (1): 034-038, 2015 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding author

SMS SECURITY USING RC4 & AES

BHIMRAO PATIL
1

 Department of CSE, BKIT Bhalki, Karnataka, India

ABSTRACT

 Now a days Short Message Service (SMS) still represents the most used mobile messaging service. SMS messages

are used in many different applications, even in cases where security features, such as authentication and confidentiality

between the communicators must be ensured. Unfortunately, the SMS technology does not provide a built-in support for

any security features. Though, it is claimed that all messages use a public key cryptography by the service provider, the

messages are readable by the service provider. Hence secured communication over SMS is a big challenge. This work

presents, a software framework written in .Net which allows two peers to exchange encrypted and digitally signed SMS

messages. The communication between peers is secured by using public-key cryptography. The key-exchange process is

implemented over a voice framework whereby the end users exchange the passkey over the phone. The passkey is than

hashed using AES and the hashed password is used for encrypting the messages. For encryption we use RC4 and AES

with Rijndael encryption engine. At the sender side, a Phone is configured as modem using GSM technique. The message

is composed and encrypted and sent through GSM interface. At the receiver side, the message is firstly downloaded to PC

through PC suite, decryption is than applied over the message. Special attention has been devoted to the implementation

of an efficient framework in terms of energy consumption and execution time. This efficiency is obtained in two steps.

First, all the cryptosystems available in the framework are implemented using mature and fully optimized cryptographic

libraries. Second, an experimental analysis was conducted to determine which combination of cryptosystems and security

parameters were able to provide a better trade-off in terms of speed/security and energy consumption.

KEYWORDS: Short Message Service (SMS) cryptosystems, energy consumption

 SMS messages are currently one of the most

widespread forms communications (in 2008 about six

trillion SMS were sent globally . Sending an SMS is

cheap, fast and simple. We have seen many unusual

or strange applications, such as devices which allow

the switching on and off of house heating systems

using an SMS .Alternatively, through SMS,

whenever the temperature of a refrigerator exceeds a

certain threshold, it is possible to automatically,

communicate the problem A. Castiglione 2009,

financial transactions (often, micro transactions) by

sending SMS messages A. Hossain 2008 .Many of

these services seem to ignore one important

drawback of SMS based communication: the

substantial lack of security. For example, by using

bulk SMS service providers it is relatively simple to

forge an SMS and send it to a recipient, as if it was

transmitted by any sender. So, services like the ones

we mentioned before are prone to be attacked by

malicious users M. Toorani 2008. In this case, for

example, it would be easy to damage a user of the

service by just sending to the Mobility Agency

servers several forged SMS that have apparently been

originated by that user. Two are the major security

vulnerabilities affecting SMS based communication

K. Hypponen 2006: the lack of confidentiality during

the transmission of a message and the absence of a

standard way to certify the identity of the user (or at

least his phone number) who sent the message. These

vulnerabilities originate from the protocol used to

exchange SMS messages and from the infrastructures

used to implement it. There are currently several

proposals, mostly coming from the scientific

research, about how to secure SMS messages. Some

of these proposals require security to be injected at

the protocol level. Instead, most of them consist of

software frameworks which can be installed on

mobile phones and/or on the SIM cards in order to

implement security features.

This paper presents a novel contribution to

this field, consisting of a software framework which

allows two peers (end users and/or software

applications) to exchange SMS messages in a secure

way, certifying the phone number of the peers

involved in a SMS communication.

RELATED WORK

There have been several proposals up to

now to secure SMS based communications on a GSM

network. A first category of contributions tries to

address these problems by changing the original

BHIMRAO PATIL: SMS SECURITY USING RC4 & AES

Indian J.Sci.Res. 11 (1): 034-038, 2015

GSM specifications in order to introduce security

features. This is the case, for example, of the

proposal presented by Hossain et al. in 2006 which

argues for a modification of the GSM protocol at the

transport level to achieve confidentiality between

mobile equipment (ME) and the GSM base station

(BS) connected to it. The advantage of this approach,

if followed, is that it would be able to inject security

features at infra-structural level, thus allowing

strengthening the entire communication network.

 However, it is unlikely that these proposals

will be implemented and widely adopted in the near

future, mostly because of the technical difficulties

arising from the implementation of structural changes

in well established network architecture like the GSM

one.

 A second category of contributions to secure

SMS communication- which is becoming viable

because of the increasing diffusion of ME with

advanced computational capabilities - introduces

security features through the implementation of

security schemes at the application level. The

resulting software frameworks can be categorized

according to the place where the application

implementing the security scheme, and their

cryptographic keys, are stored. The first possibility is

to locate the application and its keys in a

programmable SIM card used by the ME. This

solution is adopted by systems like the one developed

by M. Hassinen et al. in 2005. The use of a

programmable SIM card has several advantages, such

as the tamper resistance of the card and the

possibility to move it from one ME to another

without any data loss. However, it also has a relevant

drawback: the limited computational capabilities of a

programmable card do not allow the execution of

complex security schemes within a reasonable

amount of time.

An alternative approach, adopted in systems

like the one presented in D. Lisonek 2008, is to use a

SIM card only to store the cryptographic keys used in

a scheme, while using the computational capabilities

of the ME to run the scheme. In addition, it is also

possible to use a SIM card to perform certain

cryptographic operations, while executing the

remaining part of the application through the ME,

like in the mobile payment scheme presented by

Hassinen et al. in 2005. Even just storing the

cryptographic keys on a SIM card has an important

disadvantage: the user is tied to the SIM provided by

a particular operator and the interoperations with SIM

cards relative to other operators may be difficult or

impossible to achieve.

 SMSSec is an end-to-end protocol with the

object of providing SMS security. It does not require

any private-key to be stored in the mobile device, but

provides user authentication and encryption by means

of a PIN code running an ad hoc protocol with an

Authentication Source (AS) authority. SMSSec uses

symmetric (AES) and asymmetric (RSA)

cryptography for the encryption and key-agreement

respectively. On one hand, this approach allows a fast

encryption process, while not altering the size of the

SMS. Whereas, on the other, prior to any

transactions, there is need of a new key-agreement

with the AS, with the consequent exchange of

additional initialization messages.

PROPOSED SYSTEM

 The SEESMS framework adopts hybrid

architecture. If a user is interested in

sending/receiving a secure message through

SEESMS and has never used it before, then he/she

has to contact a trusted third-party server, called

Secure SMS Management Center (SSMC), to request

a customized copy of the SEESMS client application.

Similarly, if the user has already installed the

SEESMS client, but does not own the public-key of

the recipient of the msg (or the public-key of the user

who sent him a secure SMS message), he/she has to

contact the SSMC server to ask for a copy of his key

(this behaviour is similar to the PGP key-servers).

Instead, if the user already owns the public-key of his

recipient, he/she will establish a direct

communication in a peer-to-peer fashion, without

further interaction with the SSMC server. Due to the

use of a standard interface definition, all the

cryptosystem engines have the same interface

resulting in the ability to load them in the framework

seamlessly.

BHIMRAO PATIL: SMS SECURITY USING RC4 & AES

Indian J.Sci.Res. 11 (1): 034-038, 2015

Figure 1: Secure SMS Management Center

 The following subsections describe in

details of the SEESMS software components and

their internal architecture, as described in above

Figure 1 SECURE SMS MANAGEMENT CENTER:

The SSMC is in charge of handling the provisioning

process, used to deliver to new users a customized

copy of the SEESMS client application, and the key-

distribution process, used to send the public-keys of

registered users following a client request. The entire

communication with clients is done by using signed

SMS messages. The application includes the

following modules:

 Registration Service (RS): The RS is used to

register new users, to provide them a copy of the

SEESMS client application and to run key-exchange

protocols with them.

 Server Message Handler (SMH): The SMH

is a module that can be used to exchange messages

with another peer by means of SMS messages. It also

includes the code needed to serialize /deserialize

SMS messages and send /receive them through a

GSM modem.

 Secure Storage (SS): The SS implements a

secure local storage area used to encrypt and to

maintain sensitive data about the users that are

registered to the service, such as their public-keys or

their registration information. Data is encrypted using

the AES symmetric cipher and stored in a relational

database.

 Cryptosystem Engines (CE): The CE are the

modules that take care of securing the messages

exchanged with a remote user. Each CE carries the

implementation of a cryptosystem and offers up to

three standard set of functions: Key Generation,

Message Encryption/Decryption and Message

Signature/Verification. These engines are used by the

SSMC to implement the user registration phase and

the key-exchange protocol. The current version of

SEESMS includes the engines implementing ECC

(ECDSA and ECIES), RSA and DSA. SEESMS

CLIENT: The SEESMS client application can be

used by two parties

 To exchange encrypted and digitally signed

SMS messages. It includes the following modules.

 Message Handler (MH): The MH is

responsible for sending and receiving secure SMS

messages. It is a trimmed version of the SMH, not

including the code needed to handle communication

over a GSM modem.

 Secure Storage (SS): The SS implements a

secure local storage area used to hold sensitive data

such as the cryptographic keys of a user.

 Cryptosystem Engines: Similarly to the

SSMC case, these modules are used to implement the

registration phase and the key-exchange protocol and,

BHIMRAO PATIL: SMS SECURITY USING RC4 & AES

Indian J.Sci.Res. 11 (1): 034-038, 2015

moreover, all the functions related to secure

communications with another user.

 Keys Communicator: This module

implements the client-side key-exchange protocol,

which is used to communicate to the SSMC the

cryptographic keys generated by the client.

RC4 ALGORITHM

 RC4 is a stream cipher symmetric key

algorithm. It was developed in 1987 by Ronald

Rivest and kept as a trade secret by RSA Data

Security. On September 9,1994, the RC4 algorithm

was anonymously posted on the Internet on the

Cyperpunks’ ”anonymous remailers” list. RC4 uses a

variable length key from 1 to 256 bytes to initialize a

256-byte state table. The state table is used for

subsequent generation of pseudo-random bytes and

then to generate a pseudo-random stream which is

XOR-ed with the plaintext to give the cipher text.

Each element in the state table is swapped at least

once. The RC4 key is often limited to 40 bits,

because of export restrictions but it is sometimes

used as a 128 bit key. It has the capability of using

keys between 1 and 2048 bits. RC4 is used in many

commercial software packages such as Lotus Notes

and Oracle Secure SQL. It is also part of the Cellular

Specification.

Algorithm Description: The RC4 algorithm works in

two phases:

• Key setup

• Ciphering

Key Setup

Key setup is the first and most difficult

phase of this algorithm. During a N-bit key setup (N

being your key length), the encryption key is used to

generate an encrypting variable using two arrays,

state and key, and N-number of mixing operations.

These mixing operations consist of swapping bytes,

modulo operations, and other formulae. The

preliminary operations can be summarized as

follows:

//Initialization for i=0 to 255 do s[i]=i;

T[i]=K[i mod keylen];

Next use T to produce the initial permutation of S.

this involves starting with s[0] and going through

s[255], and for each of s[i], swapping S[i] with

another byte in S according to scheme dictated by

t[i]:

// Initial Permutation of s j=0;

for i=0 to 255 do j=(j+S[i]+T[i]) mod 256;

Swap(S[i],s[j]);

//stream generation i,j=0;

while(true)

i= (i+1) mod 255; j=(j+S[i]) mod 256;

Swap(S[i],S[j]); t=(s[i]+S[j]) mod 256; k=([t]

 In the attached project you can see how I do

it in the Encryption Key set property of RC4Engine

class.

Ciphering Phase

 Once the encrypting variable is produced

from the key setup, it enters the ciphering phase,

where it is XOR-ed with the plain text message to

create an encrypted message. XOR is the logical

operation of comparing two binary bits. If the bits are

different, the result is 1. If the bits are the same, the

result is 0. Once the receiver gets the encrypted

message, he decrypts it by XOR-ing the encrypted

message with the same encrypting variable.

 In the attached project you can see how I do

it in the RC4Engine class:

• Encrypt: encript method

• Decrypt: decript method

AES

AES is short for Advanced Encryption

Standard.AES is a symmetric encryption algorithm

that us certain substitution & permutation methods to

process data in block of 128 bits.AES may

configured to use different key-lengths, the standard

defines 3 lengths and the resulting algorithms are

named AES-128, AES-192 and AES-256

respectively to indicate the length in bits of the key.

Each additional bit in the key effectively doubles the

strength of the algorithm, when defined as the time

necessary for an attacker to stage a brute force attack.

BHIMRAO PATIL: SMS SECURITY USING RC4 & AES

Indian J.Sci.Res. 11 (1): 034-038, 2015

Cryptographic Algorithms

Algorithm

Name
Structure

Key Size

(In bits)

Rounds

Cipher
Type

AES

Substitution

permutation

network

128, 192,

256

10, 12,

14
Block

RC4
40 to

2048
256 Stream

CONCLUSION

 There are several proposals for securing the

short messages due to inherent unsecured framework

of the same. As SMS is considered to be for

exchanging shorter information, the core protocol

does not adopt any security. As the digital age has

evolved, SMS starts supporting larger messages

(more than 160 characters) by fragmenting the one

message into smaller message and then joining them

together at the receiver mobile. Hence more critical

data are being exchanged over SMS like bank

account details, passwords of the accounts, loan

number and so on. This makes the system vulnerable

as the intruder can pick a gateway to hack the

messages and extract information. But the

conventional solutions offer the technique to be

implemented in the mobile using technologies like

J2ME or Android. But the results clearly shows that

the encryption and decryption consumes a lot of

energy which is far more significant if carried out at

the mobiles due to the hardware limitations of the

mobile.

 Therefore in this work I have demonstrated

a unique mechanism for SMS security through

adopting RC4 and Rijndael based security. The result

analysis clearly shows that RC4 is better in terms of

energy conservation whereas Rijndael provides better

encryption strength. currently mobile equipment(ME)

alone will not able to decrypt cipher text at

destination (receiver side).So in future ME can be

enhanced such that it can be able to decrypt the

message on its own , without using the PC suite

software and an extra hardware like Personal

computer. This work advises that before

implementing a cryptographic application by using

existing cryptographic libraries, it would be a good

practice to test if the experimental performances of

these libraries follow the expected theoretical results.

REFERENCES

Mobile Message Analyst,

http://www.bizcommunity.com/Article/19

6/78/38788.html, online visited July 2009.

Tele-Log, http://www.tele- log.com/domotica-e.html,

online visited July 2009.

A. Castiglione, R. De Prisco, and A. De Santis,”Do

You Trust Your Phone?” in EC-Web 2009:

Proceedings of the 10th International

Conference on E-Commerce and Web

Technologies, vol. LNCS 5692. Berlin,

Heidelberg: Springer-Verlag, 2009, pp. 50-

61.

A. Hossain, S. Jahan, M. Hussain, M. Amin, and S.

Shah Newaz,”A proposal for enhancing

the security system of short message

service in GSM,” in Anticounterfeiting,

Security and Identification, 2008. ASID

2008. 2nd International Conference on,

Aug. 2008, pp. 235-240.

IPCS Group”IPCryptSim SMS Encryption”,

http://www.ipcslive.com/pdf/IPCSSMS.pd

f, online visited July 2009.

M. Toorani and A. Beheshti Shirazi, ”SSMS - A

secure SMS messaging protocol for the m-

payment systems,” in Computers and

Communications, 2008. ISCC 2008. IEEE

Symposium on, July 2008, pp.700

M. Hassinen, K. Hypponen, and K. Haataja, An

Open, PKI-Based Mobile Payment

System, in ETRICS, 2006, pp. 86100.

M. Hassinen, SafeSMS - end-to-end encryption for

SMS, in Telecommunications, 2005.

ConTEL 2005. Proceedings of the 8th

International Conference on, vol. 2, 15-17,

2005, pp. 359365.

D. Lisonek and M. Drahansky, SMS Encryption for

Mobile Communication, in Security

Technology, 2008. SECTECH 08.

International Conference on, Dec. 2008,

pp. 19Polymorphic virus8201.

